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1. Introduction

VSI spacetimes are N -dimensional Lorentzian spacetimes in which all curvature invariants

of all orders vanish [1]. Recently, we presented all of the metrics for the higher-dimensional

VSI spacetimes, which can be of Ricci type N or III [2]. The Ricci type N VSI spacetimes

include the higher-dimensional (generalized) pp-wave spacetimes, which have been the most

studied in the literature and are known to be exact solutions of supergravity and in string

theory. However, many of the mathematical properties of VSI spacetimes (in general, and

the pp-wave spacetimes in particular) may not be familiar.

In this paper we will show that all Ricci type N VSI spacetimes are solutions of su-

pergravity (and argue that Ricci type III VSI spacetimes are also supergravity solutions

if supported by appropriate sources). The VSI Ricci type III supergravity solutions to

be presented are new. We also find some new Ricci type N supergravity solutions. We

explicitly study type IIB supergravity, but similar results are expected in all supergravity

theories. We also argue that, in general, the VSI spacetimes are exact string solutions to

all orders in the string tension.
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We then discuss which VSI supergravity spacetimes can admit supersymmetry. It is

known that in general if a spacetime admits a Killing spinor, it necessarily admits a null or

timelike Killing vector. Therefore, a necessary (but not sufficient) condition for a particular

supergravity solution to preserve some supersymmetry is that the spacetime possess such

a Killing vector. In the appendix we prove that VSI spacetimes whose metric functions

have dependence on the light-cone coordinate v cannot possess a null or timelike Killing

vector. Hence, only VSI spacetimes with a covariantly constant null vector are candidates

to preserve supersymmetry. Such spacetimes include not only pp-waves but also (the more

general) spacetimes of algebraic Weyl type III(a).

We therefore study the supersymmetry properties of VSI type IIB supergravity solu-

tions with a covariantly constant null vector. We focus on solutions of Weyl type III(a),

since type N spacetimes have been studied extensively. We conclude there are no such

supersymmetric solutions in the vacuum type III(a) case. We present explicit examples of

Weyl type III(a) NS-NS (one-half) supersymmetric solutions.

1.1 Higher-dimensional VSI metrics

All curvature invariants of all orders vanish in an N -dimensional Lorentzian (VSI) space-

time if and only if there exists an aligned shear-free, non-expanding, non-twisting, geodesic

null direction ℓa along which the Riemann tensor has negative boost order [1]. The VSI

spacetimes can be classified according to their Weyl type, Ricci type and the vanishing

or non-vanishing of the ‘spin coefficient’ ε [3]. In [2], the explicit metric forms for higher

dimensional VSI spacetimes were presented.

Since VSI spacetimes possess a null vector field ℓ obeying

ℓAℓB;A = ℓA
;A = ℓA;Bℓ(A;B) = ℓA;Bℓ[A;B] = 0; (1.1)

i.e., ℓ is geodesic, non-expanding, shear-free and non-twisting, the VSI spacetimes belong

to the higher-dimensional Kundt class [1]. It follows that any VSI metric can be written

in the form

ds2 = 2du
[

dv + H(v, u, xn)du + Wi(v, u, xn)dxi
]

+ δijdxidxj (1.2)

with i, j = 1, . . . , N−2. The negative boost order conditions of the Riemann tensor yield [2]

Wi(v, u, xk) = vW
(1)
i (u, xk) + W

(0)
i (u, xk), (1.3)

H(v, u, xk) =
v2

8
(W

(1)
i )(W (1)i) + vH(1)(u, xk) + H(0)(u, xk). (1.4)

The W
(1)
i are subject to further differential constraints: using the allowable freedom we

can choose

W
(1)
1 = −2

ε

x1
; W (1)

n = 0, n = 2, . . . , N − 2 (1.5)

(where ε = 0 corresponds to W
(1)
1 = 0 and ε = 1 corresponds to W

(1)
1 6= 0). Accordingly,

H(v, u, xk) =
v2ε

2(x1)2
+ vH(1)(u, xk) + H(0)(u, xk). (1.6)
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We note that, in general, for the Kundt metrics there exist coordinate transforma-

tions x′j = f j(u, xi) which can be used to simplify either the transverse metric or the

functions W
(0)
i (u, xk). Here we have used this to eliminate the u-dependence in the trans-

verse metric to get the explicitly flat metric δijdxidxj (and hence in these coordinates

the Wi are not zero). Under the remaining allowable coordinate transformations we ob-

tain H(0)(u, xk) → H(0)(u, xk) − (h(u, xk)),u, so that we can redefine W
(0)
i and essentially

freely specify H(0) (e.g., we could set H(0) to zero), and in the case ε = 0, we obtain

H(1)(u, xk) → H(1)(u, xk) + G(u) (after redefining H(0) and W
(0)
i ), where G(u) is freely

specifiable.

All of these spacetimes are VSI. The spacetimes above are in general of Ricci and Weyl

type III. Further progress can be made by classifing the metric in terms of their Weyl type

(III, N or O) and their Ricci type (N or O) [3], and the form of ε. The metric functions H

and Wi satisfy the remaining Einstein equations. In table 1 in [2], all of the VSI spacetimes

supported by appropriate bosonic fields are presented and the metric functions are listed.1

It is the higher-dimensional (generalized) pp-wave spacetimes that have been most studied

in the literature. It is known that such spacetimes are exact solutions in string theory [4 –

6], in type-IIB superstrings with an R-R five-form [7], also with NS-NS form fields [8].

In higher dimensions, VSI supergravity solutions can be constructed [5], and we shall see

that all VSI spacetimes are solutions of superstring theory when supported by appropriate

bosonic fields.

It is convenient to introduce the null frame

ℓ = du, (1.7)

n = dv + Hdu + Wim
i+1, (1.8)

mi+1 = dxi. (1.9)

The Weyl tensor can then be expressed as [3]

Cabcd = 8Ψiℓ{anbℓcm
i
d} + 8Ψijkm

i
{am

j
bℓcm

k
d} + 8Ψijℓ{am

i
bℓcm

j
d}. (1.10)

The case Ψijk 6= 0 is of Weyl type III, while Ψijk = 0 (and Ψi ≡ 2Ψijj = 0) corresponds

to type N. Further subclasses of type III can be considered; for example, type III(a) where

Ψi = 0 but Ψijk 6= 0. The Ricci tensor is given by

Rab = Φℓaℓb + Φi(ℓam
i
b + ℓbm

i
a). (1.11)

The Ricci type is N if Φi = 0 = R1i (otherwise the Ricci type is III; Ricci type O is

vacuum). When ε = 0, 1 the Ricci type N conditions Φi = 0 reduce to

2H
(1)

,1 =
2ε

x1
W (0)m

,m − W
(0)m

,m1 (1.12)

2H(1)
,n = ∆W (0)

n − W (0)m
,mn (1.13)

1The Christoffel symbols needed for the calculations are: In ε = 0 VSI spacetimes, Γ λ
λv = Γ λ

λi = 0 for

any choice of λ. In ε = 1 VSI spacetimes, Γ λ
λv = 0, Γ u

u1 = −Γ v
v1 = −

1
2
W1,v.
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subject to

∆W
(0)
n,1 =

2ε

x1
W (0)m

,mn, ∆W (0)
m,n = ∆W (0)

n,m, (1.14)

where ∆ = ∂i∂i is the spatial Laplacian and m,n ≥ 2. As a result, in Ricci type N

spacetimes H(1) can be determined as a function of the W
(0)
i (in contrast to the Ricci type

III case).

For the VSI spacetimes, the aligned, repeated, null vector ℓ is a null Killing vector (KV)

if ℓ1;1 = 0 = ℓ(1;i) (i.e., ε = 0), whence H,v = 0 and Wi,v = 0 and the metric no longer has

any v dependence. Furthermore, since LAB := ℓA;B = ℓ(A;B) it follows that in this case if

ℓ is a null KV then it is also covariantly constant. In general, the higher-dimensional VSI

metrics admitting a null KV (and hence a covariantly constant null vector (CCNV)) are

of Ricci and Weyl type III [2]. The subclass of Ricci type N CCNV spacetimes are related

to the (F = 1) chiral null models of [5]. The subclass of Ricci type N and Weyl type III(a)

spacetimes includes the relativistic gyratons [9]. The subclass of Ricci type N and Weyl

type N spacetimes are the generalized pp-wave spacetimes.

2. VSI spacetimes in IIB supergravity

Our aim is to construct bosonic solutions of IIB supergravity [14] for which the spacetime

is VSI. We consider solutions with non-zero dilaton, Kalb-Ramond field and RR 5-form.

The corresponding field equations2 are

Rµν −
1

2
R gµν = −2∇µ∂νφ +

1

4
HµλρH

λρ
ν + e2φ 1

4 · 4!
FµλρκσF λρκσ

ν (2.1)

0 = FijklmHklm (2.2)

∇µ∂µφ = −
1

4
R +

1

4 · 2 · 3!
H2 + ∂kφ∂kφ (2.3)

0 = ∇λHλµν − 2(∂λφ)Hλµν (2.4)

H = dB (2.5)

dF = 0 (2.6)

F = ∗F (2.7)

The VSI requirement implies that all curvature tensors must be of negative boost order.

It is therefore reasonable that we similarly require that the quadratic terms in H and F in

eq. (2.1) are also of negative boost order. Since H and F are forms (hence, antisymmetric),

we must have F = (F )−1 + (F )0 + (F )1 (similarly for H), where ( )b means projection

onto the boost-weight b components. As an example, consider (F )1 which can be written

(Fµλρκσ)1 = n[µξλρκσ] where ξλρκσ is a four-form and ξλρκσnλ = ξλρκσℓλ = 0. We then have

the boost-weight 2 component (analogously for H):

(

FµλρκσF λρκσ
ν

)

2
=

1

25
nµnνξλρκσξλρκσ.

2The equations of motion of IIB supergravity are given, for example, in [10].
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The factor ξλρκσξλρκσ is a sum of squares, so that requiring that boost-weight 2 components

of the H2 + F 2 terms should vanish thus implies that ξλρκσ = 0, and hence, (F )1 = 0.

A similar calculation of the boost-weight 0 components enables us to show that if the

quadratic terms of eq. (2.1) only have negative boost weight terms then F and H only

possess negative boost weight terms.3 Assuming, in addition, that ∇µφ has negative boost

order, we thus have:

∇φ = (∇φ)−1 , H = (H)−1 , F = (F )−1 .

Note that this immediately implies that eqs. (2.2) and (2.3) are satisfied. Furthermore,

this also means that the forms can be written

Hµνρ = ℓ[µB̃νρ], Fµλρκσ = ℓ[µϕλρκσ] (2.8)

and ℓµB̃µν = ℓµϕµρκσ = 0, nµB̃µν = nµϕµρκσ = 0; i.e., B̃ and ϕ only have transverse

components. By calculating dφ and requiring this only possess negative boost order terms,

we obtain φ = φ(u).

2.1 Ricci type N solutions

We first construct solutions with Ricci type N VSI spacetimes. We postulate the following

ansatz motivated by the preceding argument

gµν = gVSI
µν , φ =

{

φ(u) (ε = 0)

φ0 (ε = 1)

}

, Hµνρ =
1

4
ℓ[µB̃νρ], Fµλρκσ = ℓ[µϕλρκσ] (2.9)

where φ0 is a constant, B̃ and ϕ are a two- and four-forms with no dependence on v,

and ℓ is the null vector field in (1.1). Eqs. (2.2), (2.3) are automatically satisfied. From

eqs. (2.5), (2.6), B̃νρ = B̃ν,ρ − B̃ρ,ν
4 and ϕ has to be a closed form. We are left with the

following equations

x1△

(

H(0)

x1

)

+

(

W (0)mW
(0)
m

x1

)

,1 −2H(1),m W (0)m (2.10)

−H(1)W (0)m,m −
1

4
WmnW mn − W (0)m

,mu = −
1

4 · 4
B̃ijB̃

ij − 3! e2φ0ϕ2 (ε = 1)

△H(0) −
1

4
WmnW mn − 2H(1),m W (0)m (2.11)

−H(1)W (0)m,m −W (0)m
,mu = 2φ′′ + H(1)φ′

−
1

4 · 4
B̃ijB̃

ij − 3! e2φϕ2 (ε = 0)

∂iB̃
ij = 0 (2.12)

ϕ = ∗8ϕ (2.13)

3One can, in principle, imagine a very special (and unnatural) situation where the derivatives of φ exactly

cancel the non-negative boost-weight terms of H2+F 2; however, we shall not consider this possibility further

here.
4Note that the relationship between B, as defined in (2.5), and B̃ is Bνρ = ℓ[νB̃ρ].
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In the above equations m,n = 2, . . . , 8 and i, j = 1, . . . , 8. Prime denotes derivative with

respect to u and ∗8 is the Hodge operator in the eight-dimensional transverse space.

The solutions above are of Weyl type III. They contain previously known solutions

such as the string gyratons [11] and pp-wave supergravity solutions [7, 5, 6, 8]. The latter

arise in the Weyl type N limit of the ε = 0 solutions (see [2]).

2.2 Ricci type III solutions

Ricci type III VSI spacetimes exist if appropriate source fields can be found. Recall that

such a Ricci tensor must have boost weight −1 components. We note that for a general

tensor product

(T ⊗ S)b =
∑

b=b′+b′′

(T )b′ ⊗ (S)b′′

Hence, the quadratic terms in H and F in eq. (2.1) necessarily have boost weight −2.

Projection of eq. (2.1) onto boost weight −1 components then gives

(Rµν)−1 = −2 (∇µ∂νφ)−1

We conclude that the space can only be of Ricci type III if (∇µ∂νφ)−1 is non-zero. This

implies that ε = 1 and φ = φ(u). Therefore, there are no Ricci III supergravity solutions

where ℓ is a covariantly constant null vector (CCNV).5. This is perhaps unfortunate, as

such solutions would have been good candidates to preserve supersymmetry.

Motivated by the preceding argument we construct a solution with non-constant dila-

ton φ = φ(u) in the ε = 1 case. Eqs. (2.1) read

x1△

(

H(0)

x1

)

+

(

W (0)mW
(0)
m

x1

)

,1 −2H(1),m W (0)m (2.14)

−H(1)W (0)m,m −
1

4
WmnW mn − W (0)m

,mu +
2v

(x1)2
φ′ = 2φ′′ + 2

(

H(1) +
v

(x1)2

)

φ′

H
(1)

,1 =
1

x1
W (0)m

,m −
1

2
W

(0)m
,m1 +

2

x1
φ′

(2.15)

2H(1)
,n = ∆W (0)

n − W (0)m
,mn (2.16)

Note that the v-dependent terms in (2.14) cancel each other. On the other hand, we can

determine H(1) from (2.15), (2.16). The complete metric function is

H = H(0)(u, xi) +
1

2

(

F̃ − W (0)m
,m

)

v +
v2

2(x1)2
, (2.17)

where F̃ = F̃ (u, xi) is a function satisfying

F̃ ,1 =
2

x1
(W (0)m

,m + 2φ′), F̃ ,n = ∆W (0)
n . (2.18)

5This is in the context of type IIB supergravity (with the sources considered) and the conditions described

above. However, we cannot exclude the existence of supersymmetric Ricci type III solutions in more general

situations.
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The solution above is, to our knowledge, the first supergravity solution of Ricci type III.

The dilaton dependence on u is crucial to construct the solution, and it reduces to Ricci

type N when the dilaton is constant (or absent). VSI supergravity solutions of Ricci type

III with form fields only do not exist. However, the solution above can be generalized in a

straightforward way to include the form fields in (2.9).

The Ricci type N, Weyl type III solutions in the previous section can be reduced to

Weyl type N. On the contrary, the Ricci type III solution presented here can only have

Weyl type III.6

2.3 Solutions with non-zero F1, F3.

The above solutions can be generalized to include non-zero F1, F3 RR fields. It is well-

known that SL(2, R) is the classical S-duality symmetry group for IIB supergravity (see,

for example, [16]). Such a transformation can be parametrized by [21]

S =

(

p q

r s

)

(2.19)

with ps − qr = 1. The fields transform according to

(

A′
2

B′

)

=

(

p q

r s

) (

A2

B

)

, τ ′ =
pτ + q

rτ + s
(2.20)

where A2 and B are the RR 2-potential and the Kalb-Ramond field, and τ = A0 + ie−φ,

where A0 is the RR scalar and φ is the dilaton. The metric and RR 5-form remain

invariant.7 The VSI solutions presented have A0 = A2 = 0. Under a transformation (2.19)

A′
2 = qB, B′ = sB (2.21)

In this way one can generate a non-zero F ′
3 which is proportional to H; the Kalb-Ramond

field gets rescaled. The dilaton and RR scalar can be read from

sA′
0 − e−(φ+φ′)r = q (2.22)

rA′
0 + se(φ−φ′)s = p (2.23)

For solutions with φ = φ(u) one obtains (F ′
1)u = ∂uA′

0. For solutions with a constant

dilaton the RR 1-form remains zero.

2.4 String corrections

In four dimensions VSI spacetimes are known to be exact string solutions to all orders in

the string tension α′ even in the presence of additional fields [12]. Using the arguments

of [4], higher-dimensional supergravity solutions supported by appropriate fields (e.g., with

6Requiring the solution to have vanishing boost weight −1 Weyl components reduces it to the Ricci and

Weyl type N solution.
7The S-duality symmetry becomes manifest when the metric is in the Einstein frame: ĝ = eφ/2g. Such

a rescaling does not affect the character of the VSI solutions presented.
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the dilaton and Kalb-Ramond field and appropriate form fields) are also known to be

exact solutions in string theory [7, 5, 6, 8]. Similarly [12], it can be argued that the

VSI supergravity spacetimes are exact string solutions to all orders in the string tension

α′, at least in the presence of a dilaton and Kalb-Ramond field. Higher-dimensional pp-

waves are also exact solutions of string theory with RR fields (e.g., a F5 field); it is to

be expected, from an analysis of the perturbative counterterms, that this is also the case

for the special VSI supergravity solutions under consideration here. Therefore, the VSI

solutions presented may be of relevance in string theory. Note that these VSI spacetimes

are, in general, time-dependent string theory backgrounds.

3. Supersymmetry

Given a spinor ǫ on a Lorentzian manifold, the vector constructed from its Dirac current

ka = ǭγaǫ (3.1)

is null or timelike. Moreover, if ǫ is a Killing spinor then ka is a Killing vector. This

result has been proven for a number of supergravity theories (for example, D = 11 [13],

type IIB [15]), and it is generally believed to hold in all theories of supergravity (although

the details may vary in each particular theory depending on the specific field equations).

Therefore, a necessary (but not sufficient) condition for a particular supergravity solution

to preserve some supersymmetry is that the involved spacetime possesses a null or timelike

Killing vector.

The existence of Killing vectors in VSI spacetimes in an arbitrary number of dimen-

sions has been studied. It is known that there can exist no null or timelike Killing vector

unless ε = 0 and H is independent of v (see appendix). Therefore, there are no super-

symmetric solutions in any other type of supergravity theory. We therefore study only the

supersymmetry properties of VSI IIB supergravity solutions with a covariantly constant

null vector [16]. These are of Ricci type N and Weyl type III(a) or N [2]. We will focus on

solutions of Weyl type III(a), as the Weyl type N ones have been discussed extensively in

the literature. We will consider two different cases: vacuum solutions and NS-NS solutions.

The Killing spinor equation for pure gravitational solutions reads

(

∂µ −
1

4
wµ abΓ

ab

)

ǫ = 0. (3.2)

Greek indices are curved indices u, v, 1, . . . , 8 and Latin indices are tangent space indices

1, . . . , 10. The supersymmetry parameter ǫ is a complex-valued 16-component chiral spinor.

In our conventions, the basis of one-forms is:

wi = dxi

w9 = du

w10 = dv + H du + Wi dxi,

– 8 –
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and the corresponding inverse frame is:

ei = ∂i − Wi ∂v

e9 = ∂u − H ∂v

e10 = ∂v .

The components of the spin connection for Weyl III(a) VSI spacetimes are

wu ij =
1

2
Wij,

wu i9 = −H(0),i +W
(0)
i,u (3.3)

wi j9 =
1

2
Wji, (3.4)

It has been proved8 that the only case where supersymmetry arises is when [17]

∂kWij = 0. (3.5)

This condition is equivalent to the functions Wi being linear in the transverse coordinates.

In that case the spacetime reduces to Weyl type N [2]. We discuss next supersymmetry on

NS-NS solutions. The fermion supersymmetry transformations are given by:

δψµ =

(

∂µ −
1

4
Ωµ abΓ

ab

)

ǫ, (3.6)

δλ =

(

/∂φ −
1

6
/H

)

ǫ, (3.7)

where Ω is the torsionful spin connection

Ωµ ab = wµ ab + Hµ ab. (3.8)

In components we have

Ωu ij =
1

2
(Wij + B̃ij),

Ωu i9 = −H(0),i +W
(0)
i,u (3.9)

Ωi j9 =
1

2
Wji, (3.10)

We consider solutions with at most one half of the supersymmetries broken;9 i.e., Γuǫ =

0. The dilatino variation then vanishes automatically and the gravitino Killing equation

reduces to
(

∂u −
1

4
(Wij + B̃ij)Γ

ij

)

ǫ = 0, ∂vǫ = ∂iǫ = 0. (3.11)

8The analysis in [17] concerns five dimensions. However, the result holds in higher dimensions so long

as the transverse space is flat [18].
9In some cases, different fractions of supersymmetry can be preserved [20].
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We see that for consistency

Wij = B̃ji + fij(u), (3.12)

where fij are arbitrary functions of u. However, for our purposes we can take fij = 0 since

such functions are related to Weyl type N solutions. We therefore obtain eight (complex)

constant Killing spinors and half of the supersymmetry is preserved.

From eqs. (3.12) and (2.12), the metric functions Wi satisfy

∂i (Wi,j − Wj,i) = 0. (3.13)

This is a necessary condition for the spacetime to be of Weyl type III(a). In addition it is

required that

∂k (Wi,j − Wj,i) 6= 0, (3.14)

The supersymmetry analysis is similar to that of [19] and the resulting solutions are the IIB

analogues to the supersymmetric string waves. However, we have shown that the solutions

can have a more general algebraic type than pp-waves. We present a few examples of such

solutions below.

Consider the VSI metric10

W1 = 0 (3.15)

Wm = fmn(u)xnx1 (3.16)

H = H(0)(u, xi), (3.17)

where fmn are antisymmetric arbitrary functions of u and m,n = 2, . . . , 8. This spacetime

satisfies (3.13), (3.14) and is therefore of Weyl type III(a). Supported by the dilaton and

Kalb-Ramond field

φ = φ(u), B̃1m = fmn(u)xn, B̃mn = 2fnm(u)x1, (3.18)

it is a supersymmetric solution of the type discussed above. The function H(0) can be

determined from equation (2.11).

Another example involves the gyraton metric presented in [9]. In ten dimensions

Wi = −
p̃i(u)xi+1

Q4
(3.19)

Wi+1 =
p̃i(u)xi

Q4
(3.20)

H = H(0)(u, xi), (3.21)

where i only takes odd values 1, 3, 5, 7 and Q = δjkx
jxk, j, k = 1, . . . , 8. The p̃i are

arbitrary functions 11 of u. The gyraton metric satisfies (3.13), (3.14) and so its Weyl type

is III(a). In [11] this spacetime was considered in the context of supergravity, together with

10This metric is the ten-dimensional generalization of a five-dimensional VSI metric of Weyl type III(a)

presented in [2].
11The relation to the functions pi in [9] is p1 = p̃1, p2 = p̃3, p3 = p̃5, p4 = p̃7.
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Ricci type ε = 0 ε = 1

III none φ = φ(u), H, F

N φ = φ(u), H, F φ constant, H, F

Table 1: VSI supergravity solutions. H and F are given in ( 2.9).

a constant dilaton and Kalb-Ramond field of the form presented in the ansatz. As we have

seen such solution can be generalized to include a dilaton depending on u. The (one-half)

supersymmetric gyraton will be the one with

φ = φ(u), B̃jk = Wkj. (3.22)

Again, H(0) can be determined from eq. (2.11). This solution belongs to the class of

saturated string gyratons in [11]. Another supersymmetric (AdS) gyraton solution is given

in [22].

4. Discussion

We have constructed solutions of IIB supergravity with NS-NS and RR fluxes and dilaton

for which the spacetime has vanishing scalar invariants (VSI). The solutions are classified

according to their Ricci type (N or III). The Ricci type N solutions are generalizations of

pp-wave type IIB supergravity solutions. The Ricci type III solutions are characterized by

a non-constant dilaton field. The resulting spacetimes are summarized in table 1. Note

that we have not attempted to classify the VSI supergravity solutions in terms of their

holonomy.

The supergravity solutions of Ricci type III (with φ = φ(u)) are new. We also find some

new Ricci type N supergravity solutions. In addition, although the results presented above

are explicitly for type IIB supergravity, similar results are expected in all supergravity

theories. We have also argued that the VSI spacetimes presented are exact string solutions

to all orders in α′, at least in the presence of a dilaton and Kalb-Ramond field.

We have also studied the supersymmetry properties of VSI spacetimes. We have shown

that VSI spacetimes whose metric functions have dependence on the light-cone coordinate

v cannot posses a null or timelike Killing vector. Hence, we have argued that only VSI

spacetimes with a covariantly constant null vector are candidates to preserve supersym-

metry. Such spacetimes include not only pp-waves but also spacetimes of a more general

algebraic type, namely, spacetimes of Weyl type III(a). We have studied the supersymme-

tries of vacuum and NS-NS Weyl type III(a) solutions. The latter preserve one-half of the

supersymmetry when the axion and metric functions are appropriately related. We present

two explicit supersymmetric examples, one of them being the string gyraton in [11]. It is

likely that RR Weyl type III(a) spacetimes preserve some supersymmetry as well; we will

address this question in future work.

– 11 –
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A. Killing vectors

In this appendix we show that there can exist no null or timelike Killing vectors in VSI

spacetimes unless ε = 0 and H is independent of v (i.e., ∂
∂v

is a covariantly constant null

vector).

Writing the frame components of the Killing vector ξ as ξ1n + ξ2ℓ + ξim
i, the Killing

equations become:

ξ1,1 = 0 (A.1)

2ξ(1,2) − ξ1H,v − ξiWi,v δii = 0 (A.2)

ξ(1,j) = 0 (A.3)

ξ2,2 + ξ2H,v + ξi[H,i − Wi,u + HWi,v − H,vWi]δ
ii = 0 (A.4)

2ξ(2,j) − ξ1[H,j − Wj,u + HWj,v − H,vWj ] + ξ2Wj,v − ξiÃijδ
ii = 0 (A.5)

ξ(i,j) = 0 (A.6)

where Ãkℓ ≡ 2W[k,ℓ]−2W[k,|v|Wℓ] (and is independent of v), and the directional derivatives

are given by

∂1 = ∂v

∂2 = ∂u − H∂v

∂i = −Wi∂v + ∂xi (A.7)

(and henceforth we shall write ∂xi = ∂i for simplicity).

For the VSI metric (1.2) the functions H and Wi are given by (see (1.3) and (1.4))

H =
1

2
H(2)v2 + H(1)v + H(0); Wi = W

(1)
i v + W

(0)
i , (A.8)

where the functions W
(0)
i ,H(0),H(1) depend on (u, xk) (i.e., are independent of v). There

are two cases, ε = 0 and ε = 1, which can be represented by (see (1.5))

H(2) =
ε

(x)2
, x ≡ x1; W

(1)
1 = −

2ε

x
, W (1)

m = 0 (m 6= 1). (A.9)

We can immediately integrate eqs. (A.1)–(A.3) to obtain

ξ1 = ξ(u, xk) (A.10)

ξ2 =
1

2
{ξH(2) − ξ,jW

(1)
j }v2 + {ξH(1) + LjW

(1)
j − ξ,u}v + η(u, xk) (A.11)

ξi = −ξ,iv + Li(u, xk) (A.12)

where ξ, η and Li are arbitrary functions of (u, xk) (and the repeated index j indicates

summation). The remaining eqs. (A.4)–(A.6) become polynomials in v of order O(v3),

O(v2), O(v), respectively, which can be solved to each power of v separately.
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Setting the O(v) term in eq. (A.6) to zero, we obtain

ε = 0 : ξ = fm(u)xm + f1(u)x + g(u)

ε = 1 : ξ =
1

x
fm(u)xm +

1

x
f1(u) + g(u) (A.13)

where m = 2, . . . , N − 2 (i.e., m 6= 1), whence it follows that the O(v3) and O(v2) terms

in eqs. (A.4) and (A.5), respectively, now vanish. Setting the O(v2) term in eq. (A.4) to

zero and the O(v) term in eq. (A.5) to zero, respectively, we then obtain

ε2

x2

{

g′ − ξ,u + H(1)(ξ − g) −
ε

x
L1 + ξ,jW

(0)
j

}

− ξ,iH
(1)
,i = 0 (A.14)

and

ξ,k(W
(0)
k,j − W

(0)
j,k ) + 2ξ,jH

(1) − 2ξ,ju + ξ,kW
(0)
k W

(1)
j + (LkWk

(1)),j = 0. (A.15)

A.0.1 The case ε = 1

Let us assume that there exists a nontrivial solution to the timelike or null Killing equations.

Rotating the frame we can then align ξi; i.e., we can use the remaining frame freedom to

choose ξi = ξIδI
i , where ξI = −ξ,Iv + L and ξ,J = 0 (J 6= I; i.e. ξ = g(u, xI)). In this

case we can then integrate eq. (A.3) to obtain ξ,I = 0, so that ξ = g(u), and consequently

L,i = 0, so that L = ℓ(u). Finally, eq. (A.6) implies that ℓ(u) = 0 or I 6= 1, whence

eq. (A.5) is satisfied identically. Hence, we have that

ξ1 ≡ g(u),

ξ2 =
1

2x2
gv2 + (gH(1) − g′)v + η(u, xk),

ξi = ℓ(u)δI
i

(I 6= 1) (A.16)

The remaining eqs. to be solved become

{

1

x2
(η − gH(0)) + (gH(1) − g′),u + ℓ

[

H
(1)
,I −

1

x2
W

(0)
I

]}

v

+{H(1)η + η,u − (gH(1) − g′)H(0) + ℓ[H
(0)
,I − W

(0)
I,u − H(1)W

(0)
I ]} = 0, (A.17)

and

{

η,j −
2

x
ηδ1

j + ℓ′δI
j + g′W

(0)
j + g(W

(0)
j,u − H

(0)
,j +

2

x
δ1
j H

(0))

−ℓ

[

W
(0)
I,j − W

(0)
j,I −

2

x
δ1
j W

(0)
I

]}

= 0. (A.18)

Setting the O(v) term in eq. (A.17) to zero we obtain

η = gH(0) − x2(gH(1) − g′),u + ℓ[W
(0)
I − x2H

(1)
,I ], (A.19)
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whence the remaining eqs. yield the contraints

2g′H(0) + gH(0)
,u − x2{(gH(1) − g′),uu + H(1)(gH(1) − g′),u}

+ℓ′[W
(0)
I − x2H

(1)
,I ] + ℓ[H

(0)
,I − x2{H(1)H

(1)
,I + H

(1)
,Iu}] = 0, (A.20)

and

{g[W
(0)
j − x2H

(1)
,j ]},u + ℓ′δI

j + ℓ{W
(0)
j − x2H

(1)
,j },I = 0. (A.21)

For nontrivial functions g and ℓ, these equations reduce to constraints on the metric func-

tions W
(0)
i ,H(1) and H(0).

A.0.2 The case ε = 0

In this case, H(2) = 0,W
(1)
i = 0, and

ξ1 = fî(u)xî + f1(u)x + g(u) = ξ(u, xu)

ξ2 = (ξH(1) − ξ,u)v + η(u, xk)

ξi = −fiv + Li

The remaining Killing eqs. become (summing over i)

{−fiH
(1)
,i }v2 + {(ξH(1) − ξ,u),u + LiH

(1)
,i − fi[H

(0)
,i − W

(0)
i,u − H(1)W

(0)
i ]}v (A.22)

+{η,u + H(1)η − H(0)(ξH(1) − ξ,u) + Li[H
(0)
,i − W

(0)
i,u − H(1)W

(0)
i ]} = 0,

and

{−2fj,u + 2fiW
(0)
[i,j]}v + {η,j + H(0)fj + Lj,u + W

(0)
j ξ,u

−ξ[H
(0)
,j − W

(0)
j,u ] − 2LiW

(0)
[i,j]} = 0. (A.23)

The Killing vector ∂
∂v

corresponds to the solution fi = Li = 0, ξ = 0, η = η0 (with

H(1) = 0) in eqs. (A.22) and (A.23). Notice that there is second solution to these eqs.

(corresponding to g′ = 0) with fi = Li = 0 when ξ = ξ0 and η = H(0)ξ0 (where ξ0 is a

constant), provided that H
(0)
,u = W

(0)
j,u = 0 = H

(1)
,u ; hence this corresponds to the case in

which all of the metric functions are independent of u. In this case ξ1 = ξ0 and ξ2 = Hξ0,

so that ξ = ξ0(dv + 2Hdu + Widxi+1), and the corresponding Killing vector is ξ0
∂
∂u

, as

expected. Note that | ∂
∂u

|2 = 2H, and so this Killing vector is timelike or null only when

H ≤ 0.

A.1 Timelike and null Killing vectors

By direct calculation we find that

|ξ|2 = gabξaξb

= 2ξ1ξ2 + δijξiξj . (A.24)
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Assuming the Killing vector is null or timelike, we obtain

{(

εξ

x
+ ξ,1

)2

+ ξ,̂iξ,̂i

}

v2 +2

{

ξ

(

ξH(1)−
2ε

x
L1− ξ,u

)

− ξ,iLi

}

v+{2ηξ +LiLi} ≤ 0 (A.25)

for all coordinate values in the local chart. In particular, this is satisfied for all values of v

(positive and negative). Hence, it follows that

(

εξ

x
+ ξ,1

)2

+ ξ,̂iξ,̂i = 0, (A.26)

which, since the left-hand-side is the sum of positive-definite terms, implies that

εξ

x
+ ξ,1 = 0; ξ,̂i = 0. (A.27)

Hence, since (A.25) is satisfied for both positive and negative values of v, we must have

that

ξ

(

ξH(1) −
2ε

x
L1 − ξ,u

)

− ξ,1L1 = 0, (A.28)

and consequently

2ηξ + LiLi ≤ 0. (A.29)

A.1.1 The case ε = 1

From eq. (A.16), we have that ξi = ξδI
i , ξ = g(u) and L = ℓ(u). It immediately follows

from (A.27) that

εξ = 0.

(Assuming ε 6= 0) we then have that ξ = 0, and hence from eq. (A.29), L = 0. Eq. (A.24)

then implies η = 0, and consequently in this case we can only obtain the trivial solution

(i.e., it there are no timelike or null Killing vectors for ε = 1).

A.1.2 The case ε = 0

From eq. (A.27) it follows that

ξ = g(u); (fi = 0)

whence eq. (A.28) implies that

g(gH(1) − g′) = 0

(and ξ2 = η(u, xk), ξi = Li; i.e., the components of the Killing vector have no v dependence).

If g = 0, then (A.29) implies that Li = 0, whence eqs. (A.22) and (A.23) yield η,j = 0,

so that η = η(u), and η′ + H(1)η = 0. In the non-trivial case (η 6= 0), this implies that

H(1) = H(1)(u). If g = 0, we have that gH(1) − g′, whence again H(1) = H(1)(u). In

either case, we can always effect a coordinate transformation to set H(1) = 0. In this case

H has no v dependence, and hence the spacetime admits a covariant constant null vector
∂
∂v

[2, 16]; that is, eqs. (A.22), (A.23) and (A.29) always admit the solution g = 0, Lj = 0,

η = η0 (a constant), corresponding to the null Killing vector ∂
∂v

(and there are no further

restrictions on the non-trivial metric functions H(0),W
(0)
i ).
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